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Abstract. We calculate the leading order anomalous dimension of the transversity structure function di-
rectly using three different methods, the local light–cone expansion in the forward case, the non–forward
case, and the short–distance expansion of the forward Compton amplitude. Our results agree with the
original calculation by Artru and Mekhfi [Z. Phys. 45 (1990) 669], which has been doubted recently. We
also comment on the next-to-leading order anomalous dimension.

1 Introduction

The transversity distribution h1(x,Q2) [1,2] is one of the
central inclusive quantities which emerge in the transverse
polarized Drell–Yan process and deep inelastic scatter-
ing off targets with a spin J ≥ 1. This function plays
also a crucial rule in proving sum rules for other inclusive
functions in deep inelastic scattering off polarized targets
[3]. The transversity distribution is a flavor non–singlet
function and receives contributions starting with twist–2.
The experimental measurement of h1(x,Q2) is currently
planned at different facilities [4] and the scaling violations
of this quantity may ultimately be compared with the pre-
dictions of perturbative Quantum Chromodynamics and
thus serve as a novel test of this theory.

The leading order (LO) splitting function Ph1(z) for
the distribution h1(x,Q2) has first been calculated by
Artru and Mekhfi [5] using time-ordered or ‘old-fashioned’
perturbation theory [6] for the range of momentum frac-
tions z < 1 determining the end–point contribution as in
the case of the longitudinally unpolarized or polarized fla-
vor non–singlet distribution PNS(z) [7], where the conser-
vation of fermion–number allows this. For the transversity
distribution such an integral relation does not exist a pri-
ori. Therefore one may doubt this procedure, as has been
done in [8] recently, where a different result was obtained
for the splitting function Ph1(z) in a direct calculation
using a method by Ioffe and Khodjamirian [9]. As a re-
sult the authors of [8] conclude that either the splitting
function Ph1(z) was wrongly calculated in the past or the
method of [9] is inapplicable.

It is the aim of the present paper to clarify this prob-
lem, which is of importance for the correct understanding
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of the evolution of the transversity distribution h1(x,Q2).
We will calculate the anomalous dimension of the distri-
bution h1(x,Q2) by three different methods. Moreover, it
is interesting to know, whether one can determine anoma-
lous dimensions using the method [9], which may be of
special importance for time–like higher order calculations,
i.e. in a situation where the light–cone expansion is inap-
plicable. A related question as raised in [8] on the correct
end–point behaviour indeed occurs also in next-to-leading
order, since the splitting function there also was evaluated
under some assumptions [10], due to the techniques being
applied, see [11,12].

The paper is organized as follows. In Sect. 2 we re-
calculate the forward anomalous dimension of h1(x,Q2)
in leading order using the local light–cone expansion, by
calculating the non–forward anomalous dimension, from
which the forward limit is derived, and the short–distance
expansion of a related Compton amplitude [9]. In Sect. 3
we comment on the next-to-leading order anomalous di-
mension of h1(x,Q2) and Sect. 4 contains the conclusions.

2 LO anomalous dimension of h1(x, Q2)

2.1 Forward-scattering anomalous dimension

We first calculate the anomalous dimension using the local
light cone expansion in the forward case, p1 = p2 = p.
The contributing diagrams are depicted in Fig. 1. The
Feynman rules for the vector–valued operator insertions
for two quark and two quark and a gluon line read

O(0)µ
n .∆ = σµν∆ν(p.∆)n (1)

O(1)µλ
n .∆ = gtaσµν∆ν

n∑
j=1

(p′.∆)j−1∆λ(p.∆)n−j . (2)
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Fig. 1a–e. The diagrams for the LO anomalous dimension for
(non) forward scattering. ⊗ are the operator insertions (1,2).
The curled and straight lines denote the gluon and quark lines,
respectively

They are denoted by the symbol⊗ in Fig. 1. Here, p′ is the
second quark momentum at the quark-quark-gluon inser-
tion Fig. 1b,c, σµν = (i/2)[γµγν −γνγµ], ∆ρ is a light–like
vector with ∆.∆ = 0, ta denotes the SU(3)c generators, g
is the strong coupling constant, and λ the vector index of
the additional gluon.

The anomalous dimension γn(g(µ)) is obtained by

γn(g(µ)) = µ2 ∂

∂µ2 lnZn(µ) , (3)

with

On(µ) = Z−1
n (µ) Obare

n . (4)

In leading order the anomalous dimension is a gauge in-
variant quantity1. We will work, for definiteness, in the
Feynman–gauge. The contributions to the Z–factor in the
forward case will be denoted by Ij with j = a, ..., e, cf.
Fig. 1.

In the limit D = 4 − ε → 4 the term Ia vanishes in
the Feynman–gauge since the contraction of the Dirac–
matrices in the numerator results into a term ∝ ε, which
cancels the pole of the loop–integral. The Z-factor, keep-
ing the quark momentum off-shell, is

Zn(µ) = 1 + 2asCF

[
2
ε

− ln
(−p2

µ2

)] 1 + 4
n∑

j=2

1
j

 , (5)

with as = αs/(4π), αs = g2/(4π), and CF = 4/3. The first
and second summand in the brackets are due to Ib + Ic
and Id+ Ie, respectively. By (3) the anomalous dimension

γh1
n (g) = asCF

1 + 4
n∑

j=2

1
j

 (6)

= 2asCF

{
−3
2
+ 2S1(n)

}
≡ −

∫ 1

0
dzzn−1Ph1(z)

is obtained in agreement with the result of [5], where
S1(n) =

∑n
j=1(1/j). Note that we did not assume any

sum–rule in this derivation. The splitting function Ph1(z)
reads

Ph1(z) = 2asCF

{
−2 + 2

(1− z)+
+
3
2
δ(1− z)

}
. (7)

1 In the MS scheme this holds to all orders

2.2 Non-forward-scattering anomalous dimension

The diagrams in Fig. 1 can also be used to calculate the
anomalous dimension of h1(x,Q2) in the non–forward
case, p1 �= p2. The operator insertions corresponding to
(1,2) read:

Oµ = −ix̃νσ
µνeix̃.p+κ+

[
eix̃.p−κ− − e−ix̃.p−κ−

]
(8)

Oµλ = igtax̃νσ
µν x̃λeix̃.p+κ+

× [
eix̃.p1κ− − e−ix̃.p1κ−

] eix̃.kκ2 − eix̃.kκ1

x̃.k
. (9)

Here we follow the notation of [13], where the correspond-
ing insertions for the unpolarized scalar operators were
given. x̃ is a light–like vector, λ the gluon vector index and
k the gluon momentum. κ1 and κ2 are light-cone marks
with κ± = (κ2 ±κ1)/2, and p± = p2 ± p1. We work in the
Feynman–gauge again and choose κ+ = 0, κ− = 1 in the
following.

There exist various equivalent representations for the
non–forward splitting functions, which are known as α−,
w−, and near–forward representation, see [13–16]. We will
first refer to the α–representation, which is directly re-
lated to the Feynman–parameter representation of the di-
agrams in Fig. 1. Let us denote the different contributions
to the non–forward Z−factor, cf. [15], by Jk, k = a, ..., e.
Ja vanishes for the same reason as in the forward case. In
the α–representation the non–forward splitting function is
obtained by

Kh1(α1, α2) =
αs

2π
CF

{[
−δ(α1)− δ(α2) + δ(α1)

(
1
α2

)
+

+δ(α2)
(
1
α1

)
+

]
+
3
2
δ(α1)δ(α2)

}
. (10)

The []+ distribution is defined by∫ 1

0
dx[f(x, y)]+φ(x) =

∫ 1

0
f(x, y)[φ(x)− φ(y)], (11)

where f is a distribution out of the space D′[0, 1] × [0, 1]
and φ(x) ε D[0, 1] a general basic function, [17]. The first
addend in (10) is due to Jb + Jc and the second due to
Jd + Je. Equation (10) agrees with a result in [18], see
also [19]. There are different possibilities to derive the
forward anomalous dimension from (10). One can either
use the near–forward representation and perform the limit
τ = x̃.p−/x̃.p+ → 0, cf. Appendix D in [15], or perform a
direct integral in the α− or w−representation [14,15], or
covert Kh1 into the local representation with respect of
the two Mellin–variables n and n′, cf. [13,15] and obtain
the forward anomalous dimension by setting n = n′.

We first change to the w−representation
Kh1(α1, α2)Dα = K̃h1(w1, w2)Dw, (12)

with

w1 = α1 − α2, w2 = 1− α1 − α2 , (13)
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K̃h1(w1, w2)

= −2asCF

{
δ(1− w2 + w1)

[
1− 2

(1− w2 − w1)+

]
+δ(1− w2 − w1)

[
1− 2

(1− w2 + w1)+

]
−3
2
δ(w1)δ(1− w2)

}
, (14)

and

Dα = dα1dα2 [θ(α1)θ(α2)θ(1− α1 − α2)
+θ(1− α1)θ(1− α2)θ(α1 + α2 − 1)] (15)

Dw =
1
2
dw1dw2 [θ(1 + w1 − w2)θ(1− w1 − w2)θ(w2)

+θ(1 + w1 + w2)θ(1− w1 + w2)θ(−w2)] (16)

The forward scattering splitting function is derived by

Ph1(z) =
∫ 1−z

−1+z

dw1K̃
h1(w1, z), (17)

cf [14,15]. One obtains from (14,17)

Ph1(z) = 2asCF

{
−2 + 2

(1− z)+
+
3
2
δ(1− z)

}
. (18)

in agreement with [5].
Likewise one may first calculate the local non–forward

anomalous dimension γnn′
h1

γnn′
h1

= 2asCF

{[
−3
2
+ 2S1(n)

]
δnn′ − 2

n− n′
n′

n
θnn′

}
,(19)

where δnn′ denotes the Kronecker symbol and θnn′ = 1
for n′ < n and 0 otherwise. In the forward limit n = n′
(6) is obtained in agreement with [5].

2.3 Derivation of the anomalous dimension
from a forward compton amplitude

The anomalous dimension for h1(x,Q2) may be also cal-
culated form the short distance expansion of the Compton
amplitude of an axial-vector and scalar current j1 and j2
directly using the method by Ioffe and Khodjamirian [9].
This has been tried in [8] recently. To extract the anoma-
lous dimension of the corresponding operator matrix el-
ement in this method we start to write down the renor-
malization group equation (RGE) for the Green’s function
F (q; p1, . . . , pn), the Fourier transform of 〈0|T [j1(x)j2(0)
φ(x1) . . . φ(xn)]|0〉,
[D + γj1(g) + γj2(g)− nγ(g)]F (q; p1, . . . , pn) = 0 , (20)

with n = 2. The RG-operator is given by

D ≡ µ2 ∂

∂µ2 + β(g)
∂

∂g
− γm(g)m

∂

∂m
, (21)

Fig. 2a–d. QCD 1–loop diagrams to the forward Compton
amplitude

and γjk
(g), γ(g), γm(g) are the anomalous dimensions of

the currents jk, the outer legs, and the mass, respectively.
β(g) denotes the β−function and µ is the factorization
scale. At short distances the Green’s function has the rep-
resentation

F (q; p1, . . . , pn) =
∑

k

Ck(q)Ek(p1, . . . , pn) , (22)

with Ck(q) the Wilson coefficients and Ek(p1, . . . , pn) the
hadronic matrix elements. Evaluating the Compton am-
plitude Fig. 2 one obtains logarithmically divergent contri-
butions which belong to the RGE of the Wilson coefficient,

[D + γj1(g) + γj2(g)− γOk
(g)]Ck(q) = 0 . (23)

The corresponding RGE for the hadronic matrix elements
Ek follows from (20,23). Here γOk

(g) is the anomalous
dimension of the composite operator Ok(0) being obtained
from

j1(x)j2(0) =
∑

k

Ck(x)Ok(0) . (24)

γOk
(g) is therefore given by (3,5,6). The term ∝ ln(−p2/

µ2) which results from the diagrams of Fig. 2 is

γC(g) = γj1(g) + γj2(g)− γOk
(g)

= −2asCF · 2S1(n) . (25)

The anomalous dimensions of the two currents are [20]

γj(s) = −CFas(s− 1)
{
(s− 3) +

as

18

[
4(s− 15)TFNf

+(18s3 − 126s2 + 163s+ 291)CA

−9(s− 3)(5s2 − 20s+ 1)CF

]}
+O(a3

s) , (26)

where s denotes the spin, i.e. γj(s=1) ≡ 0 and

γj(s=0) = −3CFas + CF

[
10
3
TFNf − 97

6
CA − 3

2
CF

]
a2

s

+O(a3
s) , (27)

which yields the splitting function, (9). This shows that
the method of [9] can be used to calculate the anomalous
dimensions.
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3 A remark on the anomalous dimension
of h1(x, Q2) at NLO

The twist–2 NLO anomalous dimension and splitting func-
tion for the distribution h1(x,Q2) was calculated in [10]
using the cut vertex method of [11] or the method out-
lined in [12]. In both cases the δ(1− z)–contribution can-
not be fixed easily by a direct calculation, see also [21],
since the calculation is performed in a physical gauge. In
fact, a complete calculation of these terms is not yet avail-
able. On the other hand, complete calculations of the NLO
anomalous dimensions as occurring for the various polar-
ized and unpolarized non–singlet and singlet twist–2 par-
ton densities contributing to the structure functions exist
in the Rξ–gauges, cf. [22]. Thus these direct calculations
assure that for the non–singlet ‘−′ twist–2 quark splitting
functions fermion number conservation holds, as energy–
momentum conservation holds in the singlet sector.

Knowing this result and working in a class of gauges in
which the NLO anomalous dimensions are gauge invariant
one may take advantage in comparing the δ(1− z)–terms
occurring in the quark splitting functions P q

NS−(z) and
Ph1(z). This is now done in the axial gauge. One clas-
sifies the contributing Schwarz distributions dealing with
the +–distribution as an individual one and not being ex-
pressed due to a composed ‘function’ of δ− and Heaviside
functions in the limit ε → 0+. Then all the δ(1− z) terms
arise from the self-energy terms, which are independent of
the operator insertion. Due to this they can be determined
without an explicit calculation, completing the calculation
of the splitting function. The result on the forward scat-
tering splitting functions has been extended to the case of
non–forward scattering in [23].

4 Summary

We have shown by three different complete calculations
that the calculation of the leading order anomalous di-
mension of the transversity distribution h1(x,Q2) as orig-
inally being derived in [5] is correct. Our results also agree
with those which have been obtained in [24] very recently.
It was shown that the method of Ioffe and Khodjamirian
can be used to derive anomalous dimensions in the present
example and similarly for related cases if applied to coef-
ficient functions Ck(x), contrary to the result of [8], which
has to be regarded to be wrong. The methor of [24] may
thus be of importance for higher order calculations in sit-
uations in which the light cone expansion does not apply.
Furthermore we argued that the δ(1 − z) terms of the
next-to-leading order calculations, although not yet being
calculated directly, are right.
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15. J. Blümlein, B. Geyer, D. Robaschik, Nucl. Phys. B 560
(1999) 283; hep-ph/9706205; hep-ph/9711405 in: Proc. of
the Workshop Deep Inelastic Scattering off Polarized Tar-
gets: Theory Meets Experiment eds. J. Blümlein et al.,
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Note added in proof: After this paper was finished D.
Boer pointed out to me that the anomalous dimension
of h1(x,Q2) was calculated prior to Artru and Mekhfi [5]
by Shifman and Vysotsky [25] and at the same time by
Baldraccini et al. [26]. Later also Bukhvostov et al. calcu-
lated a Matrix element in the quasipartonic approximation
which can be interpreted as the LO anomalous dimension
[27]. I would like to thank R. Kirschner for this remark.
We also note that the anomalous dimension of h1(x,Q2)
at small x was calculated in [28].


